NOSSO MENU

sexta-feira, 7 de agosto de 2015

seis regrinhas de matemática





Multiplicar por 9

Veja que método simples para multiplicar por 9.

Para multiplicar qualquer número de 1 a 9 por 9, faça:

1)    Estenda as duas mãos na frente.
2)    Vamos supor que você queira multiplicar 3 por 9:

Faça o seguinte:

Com as mãos na frente, da esquerda para a direita conte ate 10 ( ou seja, os 10 dedos da mãos).

- Como queremos multiplicar 3 por 9, abaixe o dedo correspondente ao número 3 (apenas o 3º dedo da esquerda para a direita).

- Conte a quantidade de dedos antes do 3º dedo ( nesse caso 2 dedos).
- Depois conte a quantidade de dedos depois do 3º dedo ( nesse caso 7 dedos)

- Agora junte 2 com 7 e forme o numero 27.
Pois 3 x 9 = 27

Através desse método responda:
9 x 1 =
9 x 2 =
9 x 4 =
9 x 5 =
9 x 6 =
9 x 7 =
9 x 8 =
9 x 9 =

Observação: Use o método.

Porcentagem – “De boa”

Porcentagens "%"  fácil ( % símbolo de porcentagem). Porcentagem é um pesadelo para muitos, entretanto, existe um método “muito de boa”.

Veja o método:

Quanto é 3% de 100?
Quanto é 3% de 200?
Quanto é 3% de 300?

A palavra “porcentagem” já nos “ fala”  para cada cem .

Pense na palavra porcentagem e faça:

Quanto é 3% de 100?

3% de 100 nada mais é que 3.

Quanto é 3% de 200?

Pense na palavra porcentagem e faça:

3% de 200 nada mais é que 3 + 3 = 6 ( 3 para cada 100)

Quanto é 3% de 300?

Pense na palavra porcentagem e faça:

3% de  300 nada mais é que 3 + 3 + 3 = 9 ( 3 para cada 100)

Seguindo o método podemos fazer:

2% na mais é que 2 “ para cada 100”

 3% nada mais é que 3 “para cada 100”

4% nada mais é que 4 “ para cada 100”
...

12% é 12 “para cada cem”, e assim por diante.

Mais exemplos :

1)    50% de 1000 = 50 + 50 +50 + 50 +50+ 50 +50 + 50 +50 + 50 = 500 ( 50 para cada 100)
2)    74% de 500 = 74 + 74 + 74 + 74 + 74 = 370 ( 74 para cada 100)
3)    20% de 150 = 20 “para cada cem”.
pois  20 + 10 = 30.

Dica final: A  porcentagens também pode ser calculadas invertendo-se os números. 10% de 22 é o mesmo que 22% de 10.


Diferença de números com dois algarismos

Veja a seguinte regrinha para fazer continhas de menos com dois algarismos:

Exemplos:
1)    75 -25 = 75 - 20 -  5 = 50  ( tiramos 20 e depois tiramos 5)

Pois 75 – 25 = 50
2)    66 – 15 = 66 – 10 – 5  = 51 ( tiramos 10 e depois tiramos 5 )

Pois 66 – 16 = 51

3)    87 – 27  = 87 – 20 – 7 = 60 ( tiramos 20 e depois tiramos 7 )

Pois 87 – 27 = 60


4)    85 – 29 = 85 – 20 – 9 = 56  (tiramos 20 e depois tiramos 9)

Pois 85 – 29 = 56
5)    12 – 11 = 12 – 10 -1 = 1 ( tiramos 10 e depois tiramos 1)

Pois 12 – 11 = 1

6)    11 – 10 = 1

7)    13 – 12 = 13 – 10 – 2 = 1 ( tiramos 10 e depois tiramos 2)

Pois 13 – 12 = 1

Observe que tiramos uma parte e depois tiramos a outra.

Faça você agora algumas continhas!

 Blz!

Multiplicando por 5

Dica:

Primeiro - Pegue qualquer número e divida por 2 (metade).

Segundo - Se o resultado for um inteiro coloque 0 ao final. Caso contrário, simplesmente apague a vírgula (e coloque  5 ao final).

Por exemplo:

1)    Pegue por exemplo 234

234 x 5 = ( 234/2) coloque 0 ou 5.
Obs: 0 quando o número for inteiro 5 quando fracionário.

Assim:

 234 x 5 = 117+0 = 1170

2)    Pegue por exemplo 66

66 x 5 = ( 66/2) coloque 0 ou 5.

66/2 = 33+ 0 = 330

3)    Pegue por exemplo 55

63 x 5 = (63/2) + 0 ou 5

31,5 (apague a vírgula deixando apenas o 5 pois já está ao final)

315



multiplicação por 11 – curiosidade

veja que beleza:

33 x 11 = 363 (3 + 3 = 6)
43 x 11 = 473 ( 4 + 3 = 7)
54 x 11 = 594 (5+4 = 9)

Observe que o resultado da soma vai no meio.
E quando essa soma ultrapassar 9:

67 x 11 = 6137 =737 (6 + 7 = 13; somamos o 1 ao 6)


Faça o teste!



Como formar a tabuada do 9

Faça o seguinte:
Uma coluna de 0 a 9 ( em ordem crescente)
0
1
2
3
4
5
6
7
8
9

Agora faça uma coluna de 9 a 0 (em ordem decrescente)

9
8
7
6
5
4
3
2
1
0

Junte as duas colunas na seguinte forma:
09
18
27
36
45
54
63
72
81
90
Esses são os resultados da tabuada do nove.


Legal né! 

por: Dan. S.

Porcentagem – “De boa”


Porcentagem – “De boa”

Porcentagens "%"  fácil ( % símbolo de porcentagem). Porcentagem é um pesadelo para muitos, entretanto, existe um método “muito de boa”.

Veja o método:
Quanto é 3% de 100?
Quanto é 3% de 200?
Quanto é 3% de 300?
A palavra “porcentagem” já nos “ fala”  para cada cem .

Pense na palavra porcentagem e faça:
Quanto é 3% de 100?
3% de 100 nada mais é que 3.
Quanto é 3% de 200?
Pense na palavra porcentagem e faça:
3% de 200 nada mais é que 3 + 3 = 6 ( 3 para cada 100)
Quanto é 3% de 300?
Pense na palavra porcentagem e faça:
3% de  300 nada mais é que 3 + 3 + 3 = 9 ( 3 para cada 100)

Seguindo o método podemos fazer:
2% na mais é que 2 “ para cada 100”
 3% nada mais é que 3 “para cada 100”
4% nada mais é que 4 “ para cada 100”
...

12% é 12 “para cada cem”, e assim por diante.

Mais exemplos :
1)    50% de 1000 = 50 + 50 +50 + 50 +50+ 50 +50 + 50 +50 + 50 = 500 ( 50 para cada 100)
2)    74% de 500 = 74 + 74 + 74 + 74 + 74 = 370 ( 74 para cada 100)
3)    20% de 150 = 20 “para cada cem”.
pois  20 + 10 = 30.

Dica final: A  porcentagens também pode ser calculadas invertendo-se os números. 10% de 22 é o mesmo que 22% de 10.

por: Dan. S. 

Multiplicar por 9



Multiplicar por 9
Veja que método simples para multiplicar por 9.
Para multiplicar qualquer número de 1 a 9 por 9, faça:
1)    Estenda as duas mãos na frente.
2)    Vamos supor que você queira multiplicar 3 por 9:

Faça o seguinte:

Com as mãos na frente, da esquerda para a direita conte ate 10 ( ou seja, os 10 dedos da mãos).

- Como queremos multiplicar 3 por 9, abaixe o dedo correspondente ao número 3 (apenas o 3º dedo da esquerda para a direita).
- Conte a quantidade de dedos antes do 3º dedo ( nesse caso 2 dedos).
- Depois conte a quantidade de dedos depois do 3º dedo ( nesse caso 7 dedos)

- Agora junte 2 com 7 e forme o numero 27.
Pois 3 x 9 = 27

Através desse método responda:
9 x 1 =
9 x 2 =
9 x 4 =
9 x 5 =
9 x 6 =
9 x 7 =
9 x 8 =
9 x 9 =

Observação: Use o método.

ângulos – curioso





ângulos – curioso

Veja que legal:
Os números tem ângulos , irei provar:
Veja!

Os números podem ser identificados por ângulos.
Observe a figura:





veja que os traços verdes representam a quantidade de ângulos 


1 corresponde a um ângulo 
2 corresponde a um ângulo
3 corresponde a um ângulo 
etc

por : Dan. S.                                                                                                                                      

veja também:
TABELAS TRIGONOMÉTRICAS
CLIQUE!


Números triangulares





Números triangulares

Os números fascinam. Pitágoras foi um dos maiores matemáticos gregos . Além de geometria Pitágoras estudou os números. Através  da curiosidade de Pitágoras, surgiu  as relações entre os números e as figuras planas. Com seus estudos Pitágoras  percebeu que havia uma ligação entre os números e a geometria e descobriu os números triangulares e os números quadrangulares.

Números triangulares

São números triangulares,  os números representados na forma de um triângulo.

Por exemplo:

Mais números triangulares:
são números triangulares 13610152128364555..
Através da quantidade de pontos, Pitágoras “via” que poderia ser construído um triângulo.
Números quadrangulares

São  números quadrangulares, os  números que representam uma forma quadrada.

Por exemplo:


 

Mais números quadrangulares:

1, 4, 9, 16, 25, 36, 49 ...

“ O legal é que Pitágoras fez relações divertidas entre as figuras planas e os números ( desenhando, procurando relações com outras áreas da matemática ).


por: Dan. S.

Redes Sociais

anuncios