Limites
Introdução
Saber trabalhar com limite é de fundamental importância no estudo do cálculo.
um dos fundamentos do Cálculo é constituído pelo conceito de limite, isso porque, para definir derivada, continuidade, integral, convergência, divergência, é utilizado esse conceito.
O registro histórico, no entanto, e justamente oposto a essa ideia. Por muito tempo, a noção de limite foi confundida com idéias vagas, às vezes filosóficas relativas ao infinito, números infinitamente grandes ou infinitamente pequenos.
A definição moderna de limite surgiu nos séculos XVIII e XIX, originário da Europa. Tal ferramenta matemática é bastante utilizada em várias árias do conhecimento, como a engenharia, a astronomia, a biologia, a física, etc.
1 Limite e continuidade
1.1 Noção intuitiva de limite
O objetivo dessa primeira postagem é mostrar uma definição intuitiva de limite.
Através de uma regra pré-estabelecida podemos escolher um conjunto de números no conjunto de números reais.
Observe as sucessões abaixo:
Observe as sucessões numéricas 1,2 e 3.
Sucessão 1
1,2,3,4,5,6,7...
A ideia que essa sucessão nos passa e que podemos marca um número real qual quer na sucessão que sempre encontraremos um termo maior que o marcado. Assim podemos dizer que os termos dessa sucessão tende para o + infinito.
Podemos fazer:
Denota-se por x tendendo para o + infinito.
Sucessão 2
0,-1,-2,-3,-4,-5...
A ideia que essa sucessão nos passa é que podemos marcar um número real qual quer na sucessão que sempre encontraremos um termo menor que o marcado. Assim podemos dizer que os termos dessa sucessão tende para o – (menos) infinito.
Podemos fazer:
Denota-se por x tendendo para o – infinito.
Sucessão 3
1/2, 2/3, 3/4, 4/5, 5/6, 6/7, 7/8...
A ideia que essa sucessão nos passa é que os termos crescem mais não, ilimitadamente. Esses termos se aproxima cada vez mais perto do 1, mais nunca atinge esse valor.
Podemos fazer:
Denota-se por x tendendo a 1.
- o conceito limites de uma função
1 Seja a função f(x) = 3x+1
Para x tendendo a 1 ( x tendendo a 1, não x=1)
Na tabela teremos:
-pela sua direita valores maiores que 1
-pela sua esquerda valores menores que 1
Tabela 1
X
|
Y=3x+1
|
X
|
Y=3x+1
|
2
|
7
|
0.5
|
2.5
|
1.5
|
4.5
|
0.7
|
3.10
|
1.10
|
4.3
|
0.8
|
3.40
|
1.05
|
4.15
|
0.95
|
3.85
|
1.001
|
4.003
|
0.99
|
3.97
|
observe:
Note que a medida que x se aproxima de 1, y se aproxima de 4, ou seja, quando x tende a 1(x->1, y tende a 4 (y-> 4)
Em geral, fazemos:
O limite da função é 4.
Obs: não é preciso que x seja 1. Se f(x) tende para 4 (f(x)->4), dizemos que o limite de f(x) quando x->1 é 4, mesmo quando possam ocorrer casos para os quais x=1 o valor de f(x) não seja 4.
Obs: quando x tende a a (x->a) , f(x) tende a b (f(x) -> b).
· seja a função y=1-1/x
para x -> +/- o infinito ( x tende a +/- o infinito, não x= +/- infinito
Na tabela teremos:
-pela sua direita valores tendendo para + infinito
-pela sua esquerda valores tendendo para – infinito
Tabela 2
X
|
Y=1-1/x
|
X
|
Y=1-1/x
|
1
|
0
|
-1
|
2
|
2
|
1/2
|
-2
|
3/2
|
3
|
2/3
|
-3
|
4/3
|
4
|
3/4
|
-4
|
5/4
|
5
|
4/5
|
-5
|
6/5
|
.
.
.
|
.
.
.
|
.
.
.
|
.
.
.
|
observe:
Note que a medida que x tende para o +/- infinito y->1.