NOSSO MENU

quinta-feira, 20 de agosto de 2015

ANAGRAMAS


ANAGRAMAS

O que é Anagrama?

Anagrama é a construção de várias palavras a partir de uma primeira palavra, em que é alterada a sua ordem original trocando as letras de lugar. Na Matemática, através da permutação, é possível descobrir quantas combinações uma palavra pode ter.

Obs: Os anagramas estão diretamente ligados a análise combinatória e aos cálculos feitos para alcançar o número possível de trocas de letras.

Permutação

Em agrupamentos que podem ser formados por  um certo número de elementos distintos, tal que a diferença entre um agrupamento e outro se dê apenas pela mudança de posição entre seus elementos, recebe o nome de permutação simples.


Por exemplo:

As permutações simples dos elementos de 1,2,3 são:

123, 132, 213, 231, 312, 321

Pn  é a permutação simples de n elementos distintos, podemos calculá-la através da seguinte fórmula:

Pn = n!

Anagramas

Exemplos:

1)    Determine o número de anagramas da palavra LIVRO.

Observe que a palavra LIVRO tem 5 elementos distintos.

Assim:

P5 = 5!  = 5 . 4 . 3 . 2 . 1 = 120 ( 120 anagramas )

Pois, para a primeira posição podemos colocar 5 letras, para a segunda 4, para a terceira 3, para a quarta 2 e para a quinta 1.


2)    Determine o número de  anagramas da palavra AMOR.

Observe que a palavra AMOR tem 4 elementos distintos.

Assim:

P4 = !  =  4 . 3 . 2 . 1 = 24 ( 24 anagramas )


Pelo princípio fundamental da contagem temos 4 . 3 . 2 . 1 = 24  ( 24 anagramas ou possibilidade)

Veja alguns anagramas:

ROMA, AMRO, MARO, etc.

Observe:  Temos 4 possibilidades para a primeira posição, 3 possibilidades para a segunda posição, 2 possibilidades para a 3 posição e 1 possibilidade para a quarta posição.


3)Quantos anagramas podemos formar a partir da palavra ORDEM?


Observe que a palavra ORDEM possui 5 letras distintas.

Assim:

P5 = 5!  = 5 . 4 . 3 . 2 . 1 = 120 ( 120 anagramas )


Pois, para a primeira posição podemos colocar 5 letras, para a segunda 4, para a terceira 3, para a quarta 2 e para a quinta 1.

por: Dan.S.

veja também:

·        fatorial
permutacao

Lei dos Cossenos


Lei dos Cossenos

A Lei dos Cossenos é uma das leis da Trigonometria. A trigonometria é a área da matemática que estuda as relações entre as medidas dos lados de um triângulo, formado por dois catetos, ou seja, dois lados, um oposto e o outro adjacente e uma hipotenusa, que é o lado oposto ao ângulo reto.

A Lei dos Cossenos mostra que: em qualquer triângulo, o quadrado de um dos lados corresponde à soma dos quadrados dos outros dois lados, menos o dobro do produto desses dois lados pelo cosseno do ângulo entre eles.

Considere um triângulo ABC qualquer de lados a, b e c:






Observe que: O quadrado de um lado é igual à soma dos quadrados dos outros dois, menos duas vezes o produto desses dois lados pelo cosseno do ângulo formado por eles ( para qualquer triângulo).
Exemplos:

1)   Utilizando a lei dos cossenos, determine o valor do segmento x.





a² = b² + c² – 2 * b * c * cosalfa
6² = x² + 5² – 2 * 5 * x * cos60º
36 = x² + 25 – 10* x * 0,5
36 = x² + 25 – 5x
x² –5x +25 -36 = 0
x² –5x - 11 = 0

Observe que x² –5x - 11 = 0 é uma equação do segundo grau, então vamos usar o método resolutivo da equação do segundo grau.

x’ = 13,3 e x” = – 3,3, como se tratar de medidas descartamos x” = –3,3 e utilizamos x’ = 13,3. Dessa forma o valor de x no triângulo é 13,3 cm
obs: utilizei o método de de completar quadrados para encontrar as raízes da equação do segundo grau.

2)   um triângulo ABC, temos as seguintes medidas: AB = 5cm, AC = 6cm e BC = 4cm. Determine a medida do ângulo A.



Usando a lei dos cossenos

Lembrando que:




a = 6, b =5 e c = 4

6² = 5² + 4² – 2 * 5 * 4 * cos A
36 = 25 + 16 – 40 * cos A
36 – 25 – 16 = –40 * cos A
–5 = –40 * cos A
-5/-40 = cos A (“ - com – na divisão é igual a +”)
cos A = 0,125


observação: O ângulo que possui cosseno com valor aproximado de 0,125 mede aproximadamente 83 graus ( 83 graus = 0,1219). 

Por: Dan. S.

veja também :

·        lei-dos-cossenos
·        lei-dos-senos
·        as-formas-planas
·        formas-planas-e-nao-planas


Lei dos Senos


Lei dos Senos

A Lei dos Senos é uma das leis da Trigonometria. A trigonometria é a área da matemática que estuda as relações entre as medidas dos lados de um triângulo, formado por dois catetos, ou seja, dois lados, um oposto e o outro adjacente e uma hipotenusa, que é o lado oposto ao ângulo reto.

A Lei dos Senos, determina que em um triângulo, a relação do seno de um ângulo é sempre proporcional à medida do lado oposto a esse ângulo, ou seja, a Lei dos Senos demostra que num mesmo triângulo a razão entre o valor de um lado e o seno de seu ângulo oposto será sempre constante.
 Assim, para um triângulo ABC de lados a, b, c, a Lei dos Senos é representada pela seguinte fórmula:





Observação: quando o  triângulo não for retângulo, ou seja, com ângulo interno de 90º,  e  acutângulos , com ângulos menor que 90º ou obtusângulos , com ângulos maiores que 90º, devemos utilizar as Leis dos Senos e dos Cossenos.

Exemplo:

1)    Determine o valor de x no triângulo a seguir.






Observe que : sen120º = sen(180º – 120º) = sen60º = √3/2 ou 0,865

sen45º = √2/2 ou 0,705.


Arquivo em: matemática

quarta-feira, 19 de agosto de 2015

O que é um Polígono Regular e o que é um Polígono Irregular?


O que é um Polígono Regular e o que é um Polígono Irregular?



Polígonos regulares e irregulares:

Polígono regular
               
Todo polígono regular possui os lados e os ângulos com medidas iguais.


por exemplo:




polígonos regulares



Todos os seus lados têm a mesma medida, portanto, são congruentes e Todos os seus ângulos internos têm a mesma medida, ou seja, são congruentes.

Polígono irregular


Um polígono irregular é aquele que não possui os ângulos com medidas iguais e os lados não possuem o mesmo tamanho.


por exemplo: 




polígonos irregulares 


Os polígonos irregulares tem: Pelos menos 2 lados de medidas diferentes; Pelos menos 2  ângulos internos têm medidas diferentes.
Arquivo: Matemática
veja também :

·        lei-dos-cossenos
·        lei-dos-senos
·        as-formas-planas
·        formas-planas-e-nao-planas



O que é Polígono Convexo e o que é Polígono Não Convexo?



 O que é Polígono Convexo e o que é Polígono Não Convexo?





Polígonos convexos e côncavo (ou não-convexo):



Polígono Convexo: se unir quaisquer dos seus pontos, o segmento de reta obtido está sempre contido no polígono. 


polígonos côncavo ou não-convexo: se existem, pelo menos, dois pontos que unidos, formam um segmento de reta que não se encontra contido no polígono, este será côncavo.




Observe que: No polígono convexo o segmento de reta obtido está sempre contido no polígono. Em outras palavras, a região é convexa porque qualquer segmento de reta que for escolhido, desde que as suas extremidades pertençam a mesma região, só tem pontos na mesma região.

observe que: No polígono côncavo um segmento de reta não se encontra contido no polígono. Em outras palavras, existe pelo menos um segmento de reta que tem extremidades na região, mas tem pontos fora da região.






Arquivo: Matemática                                                                                                                         


veja também :

·        lei-dos-cossenos
·        lei-dos-senos
·        as-formas-planas
·        formas-planas-e-nao-planas




Redes Sociais

anuncios