NOSSO MENU

segunda-feira, 10 de agosto de 2015

Subtração de números inteiros



Subtração de números inteiros

Preste bastante atenção nos sinais das operações abaixo!

Na subtração de números inteiro é preciso muita atenção aos sinais dos números.

Considere as seguintes combinações:


Na subtração de Positivo com Negativo

Na  subtraímos  de  número positivo com um número negativo, o resultado é sempre superior ao número positivo:

Exemplos:

1)        4-(-2) =6  ( 4 + 2 = 6)
2)        8-(-3) =11 (8 + 3 = 11)

 Obs: os sinais invertem –se.


Na subtração  de  Negativo com Positivo

Quando subtraímos um número negativo com um número positivo, o resultado é inferior ao número negativo: 

Exemplos:

1)-3-(+4) =-7
2)-8-(+10) =-10

Obs: O sinal dentro dos parênteses passa a não existir:


Na subtração de Negativo com Negativo

Na subtração de dois números negativos, o resultado é superior ao menor número negativo:

Exemplos:

-1-(-4) =3
-11-(-3) =-8

Na subtração de Positivo com Positivo

Quando subtraímos dois números positivos, o resultado é  inferior ao maior número:

Exemplos:

1)    3-4=-1
2)    8-5=3
3)    13-10=3


por: Dan. S.

Oposto



Oposto

Considere a seguinte situação:

Seja um número inteiro qualquer x, podemos associar a ele outro número inteiro,  – x, que é o  oposto de x.


Por exemplo:

1)    2 é o oposto de – 2

2)    100 é o oposto de -100

3)    -1000 é o oposto de 1000

4)    10000 é o oposto de -10000


Quando envolve sinais

Veja os exemplos abaixo:

– (+2) é o oposto de +2, ou seja, – 2.

Pois - + = - ( menos com mais é igual a menos )

– (– 3) é o oposto de –3, ou seja, 3.

Pois  - - = +  ( menos com menos é igual a mais )


– (– (– 35)) é o oposto do oposto de 35, ou seja, é – 35

 Pois - - - = -  ( menos vezes menos vezes menos é igual a menos)
Por exemplo:

(-2) x( - 2)x (-2) = -8


A soma de um número pelo seu oposto

Quando somamos um número pelo seu oposto o resultado dessa soma é igual a zero.

Por exemplo:

1)    + 5 +(– 5) = 0, pois + 5 – 5 = 0

2)    – 2+(2) = 0

3)    – 3+(3) = 0

4)    – 10+(10) = 0


conjuntos numéricos fundamentais


NÚMEROS NATURAIS ( N )
A quantidade de qualquer coisa (objetos, pássaros, planetas, pessoas, etc ) empregamos os números 0,1,2,3,4,5,6,7,8,9... 
Esses números são chamados de números naturais.
os números inteiros positivos, incluindo o zero pertencem ao conjunto dos naturais . o conjunto dos números naturais é representado pela letra N maiúscula.

Exemplo:

N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... }
obs: Os elementos deste conjunto devem estar sempre entre chaves.

O Conjunto dos Naturais não nulos (quando excluímos o zero) colocamos
 * ao lado do N.
exemplo:
N* = {1, 2,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12, ... }


Os elementos do conjunto N, sempre tem um sucessor e um antecessor.
 3 é o sucessor de 2.
 10 é antecessor de 11.
  zero não tem antecessor no conjunto N
o conjunto N é infinito.

o que é infinito e o que é finito?

os números naturais maiores que 0 é infinito: {1, 2, 3, 4, ...}
os números naturais menores que 3 é finito: {0, 1, 2 }
observação: 

- todo número natural tem um sucessor 

- todo número natural tem um antecessor  (com exerção do zero)


UM NUMERO É PAR OU IMPAR QUANDO: 

-Um número natural é par quando termina em 0,2,4,6 ;
-Os números pares são: 0,2,4,6,8,10,...;
-Um número é ímpar quando termina em 1,3,5,7,...;
-Os números ímpares são: 1,3,5,7,9,11,...


EXERCÍCIOS 

1) Determine

a) O sucessor de 123
R: 124
b) o sucessor de 2.000
R:2.001
c) o sucessor de 110.000
R: 110.001
d) o sucessor de 7.777.779
R: 7.777.780
f) o antecessor de 233
R: 232
g) o antecessor de 34
R: 33
h) o antecessor de 10.000
R: 9.999
i) o antecessor de 7.084.000
R: 7.083.999
j) o antecessor de 10.000.000
R: 9.999.999


2) Adicione
a) 123 com o seu sucessor
R: 123 + 124 = 247
b) 99 com o seus antecessor
R: 99 + 98 = 197

3) Pense em todos os números naturais que se escreve com dois algarismos

a) Quantos são pares?
R: 45
b) Quantos são ímpares?
R: 45



NÚMEROS INTEIROS (  Z )

-Representamos os números inteiros pela letra Z.
( os números inteiros são números reais)

- Nas operações de adição, subtração  e multiplicação o resultado dessas operações entre dois números inteiros é um número inteiro ( dependendo de algumas divisões também obtemos um número inteiro).

Subconjuntos de Z
Z^* = Z {0}
Z+ = CONJUNTO DOS NÚMEROS INTEIROS POSITIVOS 
= { 0 ,1,2,3 ...}
Z _ =  CONJUNTO DOS NÚMEROS INTEIROS NEGATIVOS
= { ...-4,-3,-2,-1,0}


Conjunto dos números racionais (Q)


Os números racionais são todos os números que podem ser mostrados na forma de fração ou números decimais compostos por números inteiros, pertencentes ao conjunto dos números reais junto ao conjunto dos números irracionais .

Obs: O conjunto dos números racionais é representado pela letra Q maiúscula.

Exemplo de números racionais :

1/5 ou 0, 2
1/2 ou 0,5
3/4 ou 0,6
-1/2 ou -0,5

Obs: Os números 1/ 5, 1/2, 3/4  estão na forma a/b com a,b pertencente a Z e b diferente de 0.

Observações  sobre os números racionais:

Obs 1: Os número decimal exato é  número racional.
Obs 2: As dízimas periódicas é um número racional.
Obs 3: Todo número inteiro é um número racional.

Números decimais com finitas ordens decimais:

1)1 / 10 = 0, 1
2)3/100 = 0, 03
3)-3/100 = -0,03
4)25/100 = 0,25
5)-25/100 = -0,25

 Número decimal com infinitas ordens decimais periódica:

1)1/3 = 0,3333333...
2)5/11 = 0,45454545...
3)4/11 = 0,36363636...

Obs: São dízimas periódicas simples ou compostas.

 Demonstração através da utilização de diagramas:




Obs: Todo número inteiro é um número racional, portanto, o conjunto dos números inteiros (Z) é um subconjunto do conjunto dos números racionais (Q).





Conjunto dos números irracionais ( I )


Os números irracionais são os números reais que não são racionais, ou seja, o conjunto de números irracionais é o complemento do conjunto de números racionais. 


São números irracionais:


√2 = 1,4142135 ...
√3 = 1,7320508 ...
√5 = 2,2360679 ...
√8 = 2,8284271 ...
√11 = 3,31662479 ...

Observações:

Obs1: As raízes acima não são exatas.
Obs2: Os números irracionais possuem a principal característica de não possuírem representação na forma fracionária.
Obs3: Os números decimais infinitos não periódicos,  que sua composição à direita da vírgula não admite formação de períodos são números irracionais.

Dentre os mais importantes números irracionais mais temos:

-O número π (pi = 3,14 aproximado).
- O número de Euler (e = 2,71 aproximado).
- O número de ouro (Φ = 1,61 aproximado).


Obs: Raízes referentes a números que não tem quadrados perfeitos  são consideradas irracionais.



Números  Reais ( R )

Os Números Reais é representado pela letra maiúscula R e inclui os seguintes conjuntos:

Números Naturais : N = {0, 1, 2, 3, 4, 5, 6,7, 8, 9,...}
Números Racionais : Q = {...1/2, 3/4,...}
Números Irracionais : I = {...,√2 = 1,41( aproximado), √3 = 3,14(pi aproximado)...}
Números Inteiros : Z= {...,-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7...}

Obs: As letras maiúsculas representam os conjuntos numéricos.

Representação da união dos conjuntos:



Os números reais podem ser representados por qualquer número pertencente aos conjuntos da união acima.

Em que:
R: Números Reais
N: Números Naturais
Q: Números Racionais
I: Números Irracionais
Z: Números Inteiros


Usamos a expressão abaixo para representar a união dos conjuntos.

R = N U Z U Q U I ou R = Q U I

Em que:

U: União
R: Números Reais
N: Números Naturais
Z: Números Inteiros
Q: Números Racionais
I: Números Irracionais



Referência:
Fundamentos de matemática elementar : Conjuntos e funções, volume 1 , quinta edição , são Paulo, Editora ÁTICA , 2005.

por: Dan. S.

MMC e MDC



  O  minimo múltiplo comum de dois ou mais números é o menor múltiplo positivo e diferente de zero comum a todos eles.

  algumas observações importantes:

  1) zero é múltiplo de todos os números naturais.
  2) um número tem infinitos múltiplos.
  3) números primos entre si
         
   Exemplo:

         Os números 20 e 21 são números primos entre si, pois m.d.c (20,21) = 1. (pois o 1  é o único divisor comum ao 20 e ao 21)


         Os números 4 e 8 não são números primos entre si, pois m.d.c (4,8) = 8.(Dois ou mais números são primos entre si quando o máximo divisor comum desses números é 1).

 minimo múltiplo comum 
    Dois ou mais números sempre tem múltiplos comuns entre eles.

  Observe:

  Vamos encontrar os  múltiplos comuns de 4 e 8
múltiplos de 4: 0, 4, 8, 12, 16, 20, 24, ...
múltiplos de 8: 0, 8, 16, 24, ...

   São  múltiplos comuns de 4 e 8 : 0, 8, 16, 24, ... entre esses múltiplos, diferentes de zero, 8 é o menor entre eles. Portanto 8 é o múltiplo comum de 4 e 8.

   Exemplo:
 M (10) = 0, 10, 20, 30, 40, ...
 M (20) = 0, 20, 40, 60, 80, ...

     O m.m.c entre 10 e 20 é 20 ( pois o  menor múltiplo comum entre eles é o  20 ).

  -  Segunda forma de encontrar o m.m.c. Através da fatoração vamos encontrar o m.m.c entre 10 e 20. Nessa forma devemos escolher  os fatores comuns de maior expoente e termos não comuns.

     Primeiro: decompomos os números em fatores primos.
   segundo: o m.m.c é o produto dos fatores comuns e não-comuns.

     10 = 2 x 5
     20 = 2 x 2 x 5

Agora escrevemos a fatoração dos números em forma de potência, temos:

    10 = 2 x 5
    20 = 2² x 5 

  m.m.c(10;20) = 2² x 5 = 20

   O m.m.c. de dois ou mais números é o produto dos fatores comuns e não-comuns a eles, cada um elevado ao maior expoente.
- Terceira forma de encontra o m.m.c.

      Decomposição simultânea  

É o processo em que decompomos todos os números ao mesmo tempo. O produto dos fatores primos encontrados nessa decomposição é o m.m.c
     exemplo:
 m.m.c ( 10, 20, 30 )
















portanto: m.m.c (10,20,30) = 2 x 2 x 5 x 5 = 100






 M.D.C (máximo divisor comum)

Os divisores comuns de 8 e 12  são 1, 2, 4. Entre eles, 4 é o máximo divisor comum de 8 e 12 e indicamos por  m.d.c (8,12) = 4. Dois números naturais sempre têm divisores comuns. o maior divisor comum entre dois números ou mais é chamado de máximo divisor comum entre esses números.
 
 m.d.c entre os números 10 e 20

 D(10) = 1, 2, 5, 10
 D(20) = 1, 2, 5, 10

O maior divisor comum dos números 10 e 20 é 10.

 exemplos:
  m.d.c (4,6) = 2
  m.d.c (6,12) = 6 
  m.d.c (6,12,15) =3

cálculo do m.d.c

    Podemos também determinar o m.d.c de dois ou mais números através da fatoração. O m.d.c de dois ou mais números, quando fatorados, é o produto dos fatores comuns entre eles cada um elevado ao menor expoente. Utilizando esse método:

     m.d.c (10;20)

    10 = 2 x 5
    20 = 2² x 5
 
    m.d.c (10,20) = 2 x 5 = 10


Por: Dan. S.

domingo, 9 de agosto de 2015

Conjunto dos números irracionais




Conjunto dos números irracionais

Os números irracionais são os números reais que não são racionais, ou seja, o conjunto de números irracionais é o complemento do conjunto de números racionais. 


São números irracionais:



√2 = 1,4142135 ...
√3 = 1,7320508 ...
√5 = 2,2360679 ...
√8 = 2,8284271 ...
√11 = 3,31662479 ...

Observações:

Obs1: As raízes acima não são exatas.
Obs2: Os números irracionais possuem a principal característica de não possuírem representação na forma fracionária.
Obs3: Os números decimais infinitos não periódicos,  que sua composição à direita da vírgula não admite formação de períodos são números irracionais.

Dentre os mais importantes números irracionais mais temos:

-O número π (pi = 3,14 aproximado).
- O número de Euler (e = 2,71 aproximado).
- O número de ouro (Φ = 1,61 aproximado).


Obs: Raízes referentes a números que não tem quadrados perfeitos  são consideradas irracionais.

Redes Sociais

anuncios