NOSSO MENU

quarta-feira, 30 de julho de 2014

equação do primeiro grau

Introdução às igualdades 

  A expressão: 10 - 2 + 6 - 2 envolve apenas números. Essa expressão é uma expressão Aritmética. 
 Você já deve ter conhecido as operações fundamentais e suas propriedades. A parte da matemática que trabalha com essas expressões é a Aritmética.

  As expressões: 

a)2x + 3 o dobro de um número é somado a 3
b)x + 2x + 2 um número adicionado ao dobro de outro número somado a 2

 Muitas vezes somos obrigados a combinar letras com números. Essa parte da matemática em que usamos letras é chamada de Álgebra.

Sentença matemática
 No cotidiano usamos sentenças para nos comunicar em conversas e na linguagem escrita. 
 Na matemática, também usamos sentenças, para fazer afirmações sobre números. Em sentenças matemáticas, usamos símbolos no lugar de palavras. A seguir são apresentados alguns símbolos:

= ( igual a )   ≠  ( diferente de )   > ( maior que ) < ( menor que )

Igualdade
 Denominamos de  membro os termos da igualdade que aparecem à esquerda do sinal da igualdade, o  membro, os termos à direita do sinal da igualdade.

 exemplo: 
3 + 2 = 5       3 + 2 ( primeiro membro )  e  5 ( segundo membro )

princípios 

1) Quando adicionamos aos dois membros de uma igualdade um mesmo número, obtemos uma nova igualdade.

    exemplo: 
3 + 2 = 5  quando adicionamos o número 2 na expressão (3 + 2) + 2 = (5) + 2 
obtemos respectivamente 7 no primeiro membro e 7 no segundo membro
   
 2) Quando  multiplicamos os dois números da igualdade por um mesmo número, diferente de zero, obtemos uma nova igualdade.
     
   exemplo 
3 + 2 = 5 quando multiplicamos os dois membros por 2 na expressão (3 + 2)2 = (5)2
obtemos respectivamente 10 no primeiro membro e 10 no segundo membro 

equação de  grau: definição

   Equação  é toda sentença matemática representada por uma igualdade, em que exista uma ou mais letras que representam o valor de um termo desconhecido, que será representado por uma letra(incógnita), cuja representação mais usual se dá por x, y e z. O prefixo equa, em latim quer dizer "igual". 

equação  geral do primeiro grau:

ax + b = 0  
 (a e b são números conhecidos e a ≠ 0)
subtraindo b dos dois lados obtemos:
ax = -b
agora dividimos por a os dois termos:
x = -b
       a
    conjunto universo e conjunto verdade de uma equação
       
        1 Considere o conjunto = {0, 1, 2, 3, 4,} e a equação 3 + x = 6.
          O número 3 do conjunto b é denominado conjunto universo da equação e o conjunto {3} é o conjunto verdade dessa equação.

          2 Os números inteiros que satisfazem a equação x² = 4
          O conjunto dos números inteiro é o conjunto universo da equação.
          Os números -2 e 2, que satisfazem a equação, formam o conjunto verdade, podendo ser indicado por: V = {-2, 2}.  

   observe:
   O conjunto de todos os valores que a variável pode assumir  é o Conjunto Universo. 
   O conjunto dos valores de U, que tornam a equação verdadeira é o Conjunto verdade. 
   O conjunto verdade é subconjunto do conjunto universo.

   O conjunto verdade é também conhecido por conjunto solução e pode ser indicado por S.

   raízes da equação
        As raízes da equação são os elementos do conjunto verdade   .
    Para verificar se um número é raiz de uma equação:
           
         Substituímos a incógnita por esse número;
         Damos os valores de cada membro da equação;
         Verificamos a igualdade, se for uma sentença verdadeira, o número considerado é raiz da equação.
          
       exemplos:
qual dos elementos do conjunto B = { 0, 1, 2, 3, 4, 5, 6, } podemos colocar no lugar da letra x para torna a sentença verdadeira 2 + x = 4 ?

2 + x = 4   = 2 + (0) = 4 F
2 + x = 4   = 2 + (1) = 4 F
2 + x = 4   = 2 + (2) = 4 V
2 + x = 4   = 2 + (3) = 4 F

Observe o elemento é o número 2; pois os outros não tornam a sentença verdadeira.

Nas equações temos: 
1) Uma ou mais letras indicando valores desconhecidos, que são denominadas variáveis ou incógnitas;
2) Um sinal de igualdade, denotado por =.
3) Uma expressão à esquerda da igualdade, denominada primeiro membro e uma expressão à direita da igualdade, denominada segundo membro.

 exemplos:
a) equação com uma incógnita representada pela letra x.
   
 10x + 5 = 10 

b) equação com uma incógnita representada pela letra y.
    
 12 + 2x = 14

c) equação com duas incógnitas representas pelas letras x e y. 
   
   y - x = 12  

não são equações:

a) 2² - 3 = 4 - 3 embora seja uma igualdade não apresenta incógnitas 
b) 2² -3 = 2² - 3 embora seja uma igualdade não apresenta incógnitas
c) 2 + x  > 12 embora apresente elementos desconhecidos, não apresenta uma igualdade

 resolução de equação do  grau com uma incógnita: 
A resolução de uma equação significa determinar o seu conjunto verdade, dentro do conjunto universo considerado.

exemplo 1:
  para resolver uma equação: Insolamos no  membro os termos da equação que apresentam a incógnita e, no  membro, os termos que não apresentam a incógnita.

veja:
se U = Q ( Q - Conjunto dos números Racionais = todo numero que pode ser escrito na forma a/b, com a , b pertencente ao conjunto Z e b diferente de 0 ; frações, números decimais...)

3x + 5 = 2 - 2x
3x + 2x = 2 - 5   3x + 2x primeiro membro  2 - 5 segundo membro 
5x = -3                           
x = -3                           
      5
 -3   Q, então V = -3
  5                          5
1 (3x + 2x = 5x  é o  1° membro apresentando os termos da equação com incógnitas)
2 (2 - 5 = -3 é o  membro apresentando os termos da equação que não apresentam incógnitas)
3 ( 3x + 2x = 2 - 5 = 5x = -3 aplicamos as operações indicadas entre os termos semelhantes)
4 ( x = - 3/5 O coeficiente numérico da letra x do  membro deve passar para o outro lado, dividindo o elemento do  membro da equação)

 
para saber se a sentença é verdadeira 
 É  feita substituindo o valor de x na equação, observe: 

3x + 5 = 2 - 2x
substituindo x = -3/5 => -0,6 
3(-3/5)+ 5 = 2 - 2(-3/5)
3,2 = 3,2      sentença verdadeira 

Todas as equações podem ser resolvidas dessa maneira. 


exemplo 2:
2x – 2x + 5 = 5 + 2x – 20 
2X - 2X -2X = 5 - 5 -20   
-2X = -20
X = -20
       -2
X = 10

  2x - 2x - 2x primeiro membro  5 - 5 - 20 segundo membro  Insolamos no  membro os termos da equação que apresentam a incógnita e, no 2° membro, os termos que não apresentam a incógnita.

para saber se a sentença é verdadeira 
 É  feita substituindo o valor de x na equação, observe: 
2X - 2X + 5 = 5 + 2X -20
substituindo x = 10
-2.10 = -20
-20 = -20 sentença verdadeira

exemplo 3:  
 2 . (4x - 4) = 3 . (3x - 1).      → aplicar a propriedade distributiva da multiplicação 
 2 . 4x - 2  . 4 = 3 . 3- 3 . 1
8x - 8 = 9x - 3 
8x - 9x = - 3 + 8 
-x = 5
x = -5 

para saber se a sentença é verdadeira 
 É  feita substituindo o valor de x na equação, observe:  
2 . 4x - 2  . 4 = 3 . 3- 3 . 1
substituindo x = -5
8(-5) - 8 = 9(-5) - 3 
-40 - 8 = - 45 - 3
-48 = -48




veja também






terça-feira, 29 de julho de 2014

regras de sinal

  O estudo da matemática exige uma atenção redobrada por não ser uma matéria pura teórica e sim constituída de exemplos e prática. Mas se você tem dificuldades, não se preocupe, pois muitas pessoas também têm. vamos ver aqui regras de sinais:
 Nas operações com números utilizamos uma regra de sinais para adição e subtração diferente da regra utilizada para multiplicação e divisão.


Adição e subtração

  • menos (-) com menos (-): soma e conserva o sinal.
  • mais (+) com mais (+): soma e conserva o sinal.
  • menos (-) com mais (+): subtrais e conserva o sinal do maior.
  • mais (+) com menos (-): subtrais e conserva o sinal do maior.

Multiplicação e divisão
  • menos (-) com menos (-): dá mais (+).
  • mais (+) com mais (+): dá mais (+).
  • mais (+) com menos (-): dá menos (-)

exemplos:



Adição e subtração


1) (+ 2) + (+ 12) = 2 + 12 = 14 (mais com mais: soma e conserva o sinal)

2) (+ 12) + (- 6) = 12 - 6= 6 (mais com menos: subtrais e conserva o sinal do maior)

3) (+ 5) + (- 15) = - 10 (mais com menos: subtrais e conserva o sinal do maior)

4) (- 5) + (- 15) = - 20 (menos com menos: soma e conserva o sinal)

5) (- 15) + (+ 50) = 35 (menos com mais: subtrais e conserva o sinal do maior)



Multiplicação e divisão


6) (+ 2) . (- 2) = - 4 (mais com menos: dá menos)

7) (- 4) . (- 2) = + 8 (menos com menos: dá mais)

8) (+ 5) . (+ 4) = + 20 (mais com mais: dá mais)

9) (- 4) . (+ 4) = - 16 (menos com mais: dá menos)


10) (- 45) : (+ 5) = - 9 ( menos com mais: dá menos)

11)  (+45) : ( +5) = +9 ( mais com mais: dá mais)

12)  (-45) : ( -5) = +9 ( menos com menos: dá mais)

por: Danilo silva

segunda-feira, 28 de julho de 2014

como se lê uma fração


 Fração
 Os numerais que representam números racionais não-negativos são chamados frações e os números inteiros utilizados na fração são chamados numerador e denominador, separados por uma linha horizontal ou traço na fração. É importante lembrar que fração é uma representação da parte de um todo

Nomenclatura 
  numerador  
denominado

  O número que está em cima é chamado de numerador (quantas partes foram consideradas do todo), o número que está em baixo é chamado de denominador (em quantas partes o todo foi dividido)
  
  A leitura do numerador em frações é realizada de forma direta, entretanto, a leitura do denominador segue as seguintes regras: para os denominadores 2, 3, 4 usamos os respectivos nomes meio, terço e quarto. o denominador é o termo que dá nome à fração. Meio, terço, quarto, quinto, sexto e sétimo são exemplos de termos aplicados em função do denominador.

Como ler frações:

1) A leitura de uma fração em que o numerador é 1 e o denominador é um inteiro 1<d<10 ( 1<d<10 em que d é o denominador que é menor que 10).
  
  são representadas da seguinte maneira:

fração
leitura
1/2
Um meio
1/3
Um terço
1/4
Um quarto
1/5
Um quinto
1/6
Um sexto
1/7
Um sétimo
1/8
Um oitavo
1/9
Um nono

2) A leitura de uma fração em que o numerador é 1 e o denominador é um inteiro d>10 ( em que o d é o denominador maior que 10, d>10).
(Para denominadores a partir 10, devemos ler o numerador, o denominador e acrescentar o termo avos)

 são representadas das seguinte maneira:

1/11
Um onze avos
1/12
Um doze avos
1/13
Um treze avos
1/14
Um quatorze avos
1/15
Um quinze avos
1/16
Um dezesseis avos
1/17
Um dezessete avos
1/18
Um dezoito avos
1/19
Um dezenove avos


3) Quando o numerador é 1 e o denominador é um múltiplo de 10. 

são representadas da seguinte maneira:

              fração
leitura
Leitura comum
1/10
Um dez avos
Um décimo
1/20
Um vinte avos
Um vigésimo
1/30
Um trinta avos
Um trigésimo
1/40
Um quarenta avos
Um quadragésimo
1/50
Um cinquenta avos
Um quinquagésimo
1/60
Um sessenta avos
Um sexagésimo
1/70
Um setenta avos
Um septuagésimo
1/80
Um oitenta avos
Um octogésimo
1/90
Um noventa avos
Um nonagésimo
1/100
Um cem avos
Um centésimo
1/1000
Um mil avos
Um milésimo
1/10000
Um dez mil avos
Um décimo milésimo
1/100000
Um cem mil avos
Um centésimo milésimo
1/1000000
Um milhão avos
Um milionésimo

 Classificação das frações

 Fração própria; o numerador é menor que o denominador:

2 ,    1 ,   2
4      5     4


  Fração imprópria; o numerador é maior ou igual ao denominador:

8 ,   3 ,  6
4     3    4

   Frações aparente; o numerador é múltiplo do denominador:

24 ,    4 , 12
12      2     6


por: Danilo silva 

domingo, 27 de julho de 2014

números primos

Os números primos pertencem ao conjunto dos números naturais não nulos e têm apenas dois divisores diferentes: o 1 e ele mesmo, que produzem como resultado um número também natural.

observe:
  . São números primos 2, 3, 5, 7, 11, 13, 17, 19, 23,... Como se pôde observar, com exceção do 2, todos os demais números primos são ímpares. Observe também que essa definição exclui o 1 como primo (o número 1 não é um número primo, pois o mesmo não apresenta dois divisores distintos).

para saber se um número é primo  

   exemplos:
             
             5 tem apenas os divisores 1 e 5, portanto 5 é um número primo.
             2 tem apenas os divisores 1 e 2, portanto 2 é um número primo ( 2 é o único número primo par).
             8 tem os divisores 1, 2, 4 e 8, portanto 8 não é um número primo.
       
 reconhecendo um número primo

 Testando a divisibilidade do número por cada um dos números primos, com inicio em 2 ( números primos: 2, 3, 5, 7,...).
  Através da divisão do número por cada um dos números primos, temos:
   
   1) o número não é primo quando a divisão tem resto zero 
   2) o número é primo quando a divisão tem quociente menor que o divisor e o resto diferente de zero
1) Vamos testar se o número 15 é primo ou não:
  • 13 : 2 = 6, resta 1;
  • 13 : 3 = 4, restam 1;
  • 13 : 5 = 2, restam 3.
 Podemos ter a certeza de que o número 15 é primo, pois nenhum dos divisores primos testados produziu resto 0 e o quociente da divisão pelo número primo 5 é igual a 3 que é menor que o divisor 5.
2) Vamos testar se o número 15 é primo ou não:
  • 15 : 2 = 7, resta 1;
  • 15 : 3 = 5, resta 0;

 teste, a divisão foi exata, restando zero, concluímos que o número 15 não é um número primo.

por: Danilo silva

sábado, 26 de julho de 2014

M.D.C (máximo divisor comum)


 M.D.C (máximo divisor comum)
Os divisores comuns de 8 e 12  são 1, 2, 4. Entre eles, 4 é o máximo divisor comum de 8 e 12 e indicamos por  m.d.c (8,12) = 4. Dois números naturais sempre têm divisores comuns. o maior divisor comum entre dois números ou mais é chamado de máximo divisor comum entre esses números.
   
 m.d.c entre os números 10 e 20
 D(10) = 1, 2, 5, 10
 D(20) = 1, 2, 5, 10

O maior divisor comum dos números 10 e 20 é 10.
 
 exemplos:
  m.d.c (4,6) = 2
  m.d.c (6,12) = 6 
  m.d.c (6,12,15) =3

cálculo do m.d.c
    Podemos também determinar o m.d.c de dois ou mais números através da fatoração. O m.d.c de dois ou mais números, quando fatorados, é o produto dos fatores comuns entre eles cada um elevado ao menor expoente. Utilizando esse método:
     m.d.c (10;20)
 
    10 = 2 x 5
    20 = 2² x 5
   
    m.d.c (10,20) = 2 x 5 = 10

Redes Sociais

anuncios