NOSSO MENU

Mostrando postagens com marcador numeros complexos. Mostrar todas as postagens
Mostrando postagens com marcador numeros complexos. Mostrar todas as postagens

domingo, 9 de agosto de 2015

Média aritmética ponderada



Média aritmética ponderada

Ao contrario da média simples, a média aritmética ponderada calcula a média quando os valores possuem pesos diferentes.
- Você fez 4 provas e cada uma com as seguintes notas:
Primeira = 6 , segunda = 7, terceira =  8, quarta = 7.
Imagine que cada uma das notas escolares tem um peso distinto. Uma primeira prova tem peso 2, a segunda peso 3, a terceira peso 2 e a quarta peso 3.
 Como calcular ?
Primeiro - Multiplica-se o valor pelo seu peso.
Segundo - Soma aos resultados das outras multiplicações e então divide-se pela soma de todos os pesos.
Por exemplo:

6.2 + 4.3 +  8.2 + 7.3 / 2 + 3 + 2 + 3 =
 12 + 12 + 16 + 21 / 10 = 6,1

Mais exemplo:
Imagine que você fez 4 provas:
Primeira = 5 , segunda = 5, terceira =  7, quarta = 7.
Imagine que cada uma das notas escolares tem um peso distinto. Uma primeira prova tem peso 2, a segunda peso 3, a terceira peso 2 e a quarta peso 3.

5.2 + 5.3 +  7.2 + 7.3 / 2 + 3 + 2 + 3 =
 10 + 15 + 14 + 21 / 10 = 6

Se a média pra passa de ano for 6, você foi aprovado, se for maior que 6, você foi reprovado. 

Conjunto dos números racionais (Q)



Conjunto dos números racionais (Q)

Os números racionais são todos os números que podem ser mostrados na forma de fração ou números decimais compostos por números inteiros, pertencentes ao conjunto dos números reais junto ao conjunto dos números irracionais .

Obs: O conjunto dos números racionais é representado pela letra Q maiúscula.

Exemplo de números racionais :
1/5 ou 0, 2
1/2 ou 0,5
3/4 ou 0,6
-1/2 ou -0,5

Obs: Os números 1/ 5, 1/2, 3/4  estão na forma a/b com a,b pertencente a Z e b diferente de 0.

Observações  sobre os números racionais:

Obs 1: Os número decimal exato é  número racional.
Obs 2: As dízimas periódicas é um número racional.
Obs 3: Todo número inteiro é um número racional.

Números decimais com finitas ordens decimais:

1)1 / 10 = 0, 1
2)3/100 = 0, 03
3)-3/100 = -0,03
4)25/100 = 0,25
5)-25/100 = -0,25

 Número decimal com infinitas ordens decimais periódica:

1)1/3 = 0,3333333...
2)5/11 = 0,45454545...
3)4/11 = 0,36363636...

Obs: São dízimas periódicas simples ou compostas.

 Demonstração através da utilização de diagramas:




Obs: Todo número inteiro é um número racional, portanto, o conjunto dos números inteiros (Z) é um subconjunto do conjunto dos números racionais (Q).

por: Dan. S. 

Números Reais


Números  Reais

Os Números Reais é representado pela letra maiúscula R e inclui os seguintes conjuntos:

Números Naturais : N = {0, 1, 2, 3, 4, 5, 6,7, 8, 9,...}
Números Racionais : Q = {...1/2, 3/4,...}
Números Irracionais : I = {...,√2 = 1,41( aproximado), √3 = 3,14(pi aproximado)...}
Números Inteiros : Z= {...,-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7...}

Obs: As letras maiúsculas representam os conjuntos numéricos.

Representação da união dos conjuntos:



Os números reais podem ser representados por qualquer número pertencente aos conjuntos da união acima.

Em que:
R: Números Reais
N: Números Naturais
Q: Números Racionais
I: Números Irracionais
Z: Números Inteiros


Usamos a expressão abaixo para representar a união dos conjuntos.

R = N U Z U Q U I ou R = Q U I

Em que:

U: União
R: Números Reais
N: Números Naturais
Z: Números Inteiros
Q: Números Racionais

I: Números Irracionais

por: Dan. S.

sábado, 1 de agosto de 2015

tabelinha de números primos menores que 5000





Os números primos pertencem ao conjunto dos números naturais não nulos e têm apenas dois divisores diferentes: o 1 e ele mesmo, que produzem como resultado um número também natural.

observe:
  . São números primos 2, 3, 5, 7, 11, 13, 17, 19, 23,... Como se pôde observar, com exceção do 2, todos os demais números primos são ímpares. Observe também que essa definição exclui o 1 como primo (o número 1 não é um número primo, pois o mesmo não apresenta dois divisores distintos).

VEJA:

TABELINHAS DE NÚMEROS PRIMOS MENORES QUE 5000


1009 1013 1019 1021 1031 1033 1039 1049 1051 1061
1063 1069 1087 1091 1093 1097 1103 1109 1117 1123
1129 1151 1153 1163 1171 1181 1187 1193 1201 1213
1217 1223 1229 1231 1237 1249 1259 1277 1279 1283
1289 1291 1297 1301 1303 1307 1319 1321 1327 1361
1367 1373 1381 1399 1409 1423 1427 1429 1433 1439
1447 1451 1453 1459 1471 1481 1483 1487 1489 1493
1499 1511 1523 1531 1543 1549 1553 1559 1567 1571
1579 1583 1597 1601 1607 1609 1613 1619 1621 1627
1637 1657 1663 1667 1669 1693 1697 1699 1709 1721
1723 1733 1741 1747 1753 1759 1777 1783 1787 1789
1801 1811 1823 1831 1847 1861 1867 1871 1873 1877
1879 1889 1901 1907 1913 1931 1933 1949 1951 1973
1979 1987 1993 1997 1999 2003 2011 2017 2027 2029
2039 2053 2063 2069 2081 2083 2087 2089 2099 2111
2113 2129 2131 2137 2141 2143 2153 2161 2179 2203
2207 2213 2221 2237 2239 2243 2251 2267 2269 2273
2281 2287 2293 2297 2309 2311 2333 2339 2341 2347
2351 2357 2371 2377 2381 2383 2389 2393 2399 2411
2417 2423 2437 2441 2447 2459 2467 2473 2477 2503
2521 2531 2539 2543 2549 2551 2557 2579 2591 2593
2609 2617 2621 2633 2647 2657 2659 2663 2671 2677
2683 2687 2689 2693 2699 2707 2711 2713 2719 2729
2731 2741 2749 2753 2767 2777 2789 2791 2797 2801
2803 2819 2833 2837 2843 2851 2857 2861 2879 2887
2897 2903 2909 2917 2927 2939 2953 2957 2963 2969
2971 2999 3001 3011 3019 3023 3037 3041 3049 3061
3067 3079 3083 3089 3109 3119 3121 3137 3163 3167   
3169 3181 3187 3191 3203 3209 3217 3221 3229 3251
3253 3257 3259 3271 3299 3301 3307 3313 3319 3323
3329 3331 3343 3347 3359 3361 3371 3373 3389 3391
3407 3413 3433 3449 3457 3461 3463 3467 3469 3491
3499 3511 3517 3527 3529 3533 3539 3541 3547 3557
3559 3571 3581 3583 3593 3607 3613 3617 3623 3631
3637 3643 3659 3671 3673 3677 3691 3697 3701 3709
3719 3727 3733 3739 3761 3767 3769 3779 3793 3797
3803 3821 3823 3833 3847 3851 3853 3863 3877 3881
3889 3907 3911 3917 3919 3923 3929 3931 3943 3947
3967 3989 4001 4003 4007 4013 4019 4021 4027 4049
4051 4057 4073 4079 4091 4093 4099 4111 4127 4129
4133 4139 4153 4157 4159 4177 4201 4211 4217 4219
4229 4231 4241 4243 4253 4259 4261 4271 4273 4283
4289 4297 4327 4337 4339 4349 4357 4363 4373 4391
4397 4409 4421 4423 4441 4447 4451 4457 4463 4481
4483 4493 4507 4513 4517 4519 4523 4547 4549 4561
4567 4583 4591 4597 4603 4621 4637 4639 4643 4649
4651 4657 4663 4673 4679 4691 4703 4721 4723 4729
4733 4751 4759 4783 4787 4789 4793 4799 4801 4813
4817 4831 4861 4871 4877 4889 4903 4909 4919 4931
4933 4937 4943 4951 4957 4967 4969 4973 4987 4993
4999

segunda-feira, 22 de junho de 2015

NÚMEROS COMPOSTOS


NÚMEROS COMPOSTOS

São números compostos: números que apresentam mais de dois divisores diferentes.

Obs1: o número 1 não é primo nem composto, pois ele é apenas divisível por ele mesmo.

Obs2: o número zero não é divisor ( não existe divisão por zero)

Ex:
1)
8 tem os seguintes divisores:  1, 2,4,8.

2)

10 tem os seguintes divisores: 1, 2, 5, 10.

sábado, 30 de agosto de 2014

NÚMEROS NATURAIS

NÚMEROS NATURAIS


A quantidade de qualquer coisa (objetos, pássaros, planetas, pessoas, etc ) empregamos os números 0,1,2,3,4,5,6,7,8,9... 
Esses números são chamados de números naturais.


os números inteiros positivos, incluindo o zero pertencem ao conjunto dos naturais . o conjunto dos números naturais é representado pela letra N maiúscula.

Exemplo:

N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... }


obs: Os elementos deste conjunto devem estar sempre entre chaves.

O Conjunto dos Naturais não nulos (quando excluímos o zero) colocamos
 * ao lado do N.

exemplo:

N* = {1, 2,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12, ... }


Os elementos do conjunto N, sempre tem um sucessor e um antecessor.
 3 é o sucessor de 2.
 10 é antecessor de 11.
  zero não tem antecessor no conjunto N
o conjunto N é infinito.

o que é infinito e o que é finito?

os números naturais maiores que 0 é infinito: {1, 2, 3, 4, ...}
os números naturais menores que 3 é finito: {0, 1, 2 }
observação: 



- todo número natural tem um sucessor 

- todo número natural tem um antecessor  (com exerção do zero)


UM NUMERO É PAR OU IMPAR QUANDO: 

-Um número natural é par quando termina em 0,2,4,6 ;
-Os números pares são: 0,2,4,6,8,10,...;
-Um número é ímpar quando termina em 1,3,5,7,...;
-Os números ímpares são: 1,3,5,7,9,11,...


EXERCÍCIOS 

1) Determine

a) O sucessor de 123
R: 124
b) o sucessor de 2.000
R:2.001
c) o sucessor de 110.000
R: 110.001
d) o sucessor de 7.777.779
R: 7.777.780
f) o antecessor de 233
R: 232
g) o antecessor de 34
R: 33
h) o antecessor de 10.000
R: 9.999
i) o antecessor de 7.084.000
R: 7.083.999
j) o antecessor de 10.000.000
R: 9.999.999


2) Adicione
a) 123 com o seu sucessor
R: 123 + 124 = 247
b) 99 com o seus antecessor
R: 99 + 98 = 197

3) Pense em todos os números naturais que se escreve com dois algarismos

a) Quantos são pares?
R: 45
b) Quantos são ímpares?
R: 45

Redes Sociais

anuncios