NOSSO MENU

Mostrando postagens com marcador limites. Mostrar todas as postagens
Mostrando postagens com marcador limites. Mostrar todas as postagens

quinta-feira, 16 de abril de 2015

Derivada da função logarítmica.

Vamos ver nessa postagem a seguinte derivada:

Derivada da função logarítmica.

O que é derivada ?

Derivada X taxa de variação instantânea . o conceito de derivada esta  relacionada a taxa de variação instantânea de uma função. Como exemplo temos:

A taxa de variação de temperaturas;

A taxa de variação de corpos em movimento (física);

A taxa de crescimento econômico do pais;

ETC.


Agora vamos discutir sobre a derivada da função logarítmica.






derivada da função lnx

Vamos ver nessa postagem a seguinte derivada:

Derivada da função lnx .

O que é derivada ?

Derivada X taxa de variação instantânea . o conceito de derivada esta  relacionada a taxa de variação instantânea de uma função. Como exemplo temos:

A taxa de variação de temperaturas;

A taxa de variação de corpos em movimento (física);

A taxa de crescimento econômico do pais;

ETC.


Agora vamos discutir sobre a derivada da função lnx.



derivada da função expoencial

Vamos ver nessa postagem a seguinte derivada:

Derivada da função exponencial .

O que é derivada ?

Derivada X taxa de variação instantânea . o conceito de derivada esta  relacionada a taxa de variação instantânea de uma função. Como exemplo temos:

A taxa de variação de temperaturas;

A taxa de variação de corpos em movimento (física);

A taxa de crescimento econômico do pais;

ETC.

Agora vamos discutir sobre a derivada da função exponencial.

Obs: ^ é o expoente.

Seja f(x) = a^x , com a >0 e a diferente de 1, então  f`(x) = a^xlna com a>0 e a diferente de 1.

Através desses dados obtemos a seguinte formula:

f(x) = a^u
f`(x) = a^u.lna.u`

u pode assumir o valor de números ou expressões

obs: Essa é uma regra que pode ser aplicada em qualquer função exponencial que tenha essa configuração.

exemplos:

1 f(x) = 3^x
f`(x) = 3^x .ln3
onde:
3^x e a própria função e ln3 é o ln da base.
2 f(x) = 3^x^2
f`(x) = 3^x^2 . ln3.2x = 2x. 3^x^2.ln3

onde:

3^x^2 é a própria função, ln3  é  o ln da base e 2x é a derivada de x^2.

3 quando temos f(x) =  e^x a derivada é a própria função e^x.

f(x) = e^x
f`(x) = e^x = x`.e^x = e^x

pois a derivada de x é 1

OBS: o número de Euler vale aproximadamente  2,71828.

4 usando a regra da cadeia y`(x) = g`(u).f`(x):

Seja f(x) = e^u
f`(x) = e^u . u`

regra da cadeia:

y`(x) = g`(u).f`(x)

exemplos:

1       f(x) = e^x^3 + 2
f`(x) = e^x^3 + 2 . 3x^2

pela regra da cadeia  y`(x) = g`(u).f`(x) 

y`(x)= ( e^x^3+2)`;  g`(u)=(e^u)`; f`(x)= u`= (x^3+2)` =
= y`(x)=e^u.(x^3+2) = y`(x) = 1.e^u.3x^2

Substituindo u por x^3+2, obtemos:

Y`(x) = e^x^3+2 . 3x^2

2       f(x) = e^senx
f`(x) = e^senx . cosx ( cosx é a derivada de senx)

pela regra da cadeia

y`(x) = g`(u).f`(x) 
y`(x) = (e^senx)`; g`(u) = (e^u)`; f`(x) = u`= (senx)`

= e^u`.u` = substituindo u por senx, obtemos:
e^senx . cosx


quarta-feira, 15 de abril de 2015

derivada de constante

Derivada de constante

Derivada representa a taxa de variação de uma função.

Seja f(x) uma função constante f(x) = k, onde k pertence ao conjunto dos números reais, a sua derivada é igual a zero.

É muito comum utilizarmos a notação dx/dy (que se lê ´´a derivada de y em relação a x``) e a notação f`(x)( que representa a derivada de f(x).

Vamos praticar!

Derive as seguintes funções:

Obs: vamos usar a notação f`(x).

1
a)     f(x) = 1000  é um número

f`(x)=0 (derivada representada por f`(x))

b)    f(x) =35384545 é um número

f`(x) =0

c)     f(x)= - 1000000000 é um número


f`(x) =0

observe:  não importa o tamanho da constante a sua derivada sempre será zero.

Seja f(x) uma função constante f(x) = k, onde k pertence ao conjunto dos números reais, a sua derivada é igual a zero.

podemos demostrar isso através da expressão abaixo:

































sexta-feira, 10 de abril de 2015

falando um pouco sobre o cientista


 falando sobre Michael Faraday
  
   Michael Faraday (1791-1867) foi um físico e químico britânico do século 19, um dos mais influentes físico de todos os tempos. Os trabalhos mais conhecidos e influentes de Faraday estão voltados para o magnetismo e a eletricidade. Porém, no inicio, o futuro do inglês Michael Faraday era incerto. Na adolescência, aos 14 anos ele trabalhava como aprendiz de encapador, seus conhecimentos sobre a linguagem inglesa e ciências eram ruins. No entanto, Faraday aproveitava para ler os livros que passava por suas mãos; dois textos que despertou o interesse de Faraday falava sobre a eletricidade e outro sobre química.
    Faraday nasceu em Newington, Inglaterra  em 22 de setembro de 1971. Ele não só tem seus trabalhos mais conhecidos na aria dos  fenômenos da eletricidade, como também contribuiu de forma significativa para a evolução da  química enquanto ciências. 
     No experimentalismo, Faraday chegou a ser considerado como o melhor experimentalista da história da ciência, mesmo não dominando os conhecimentos de matemática avançada, o cálculo.

    A ciência, Faraday passou a estudar seriamente essa ária do conhecimento. Aos 21 anos assistiu várias palestras do químico Humphry Davy em Londres; O que ajudou muito na sua '' formação'' como cientista. 

terça-feira, 7 de abril de 2015

limites/1





   Limites

Introdução

     Saber trabalhar com limite é de fundamental importância no estudo do cálculo.
 um dos fundamentos do Cálculo é constituído pelo conceito de limite, isso porque,  para definir derivada, continuidade, integral, convergência, divergência, é utilizado esse conceito.
  
   O registro histórico, no entanto, e justamente oposto a essa ideia. Por muito tempo, a noção de limite foi confundida com idéias vagas, às vezes filosóficas relativas ao infinito, números infinitamente grandes ou infinitamente pequenos.

  A definição moderna de limite surgiu nos séculos XVIII e XIX, originário da Europa.  Tal  ferramenta matemática é bastante utilizada em várias árias do conhecimento, como a engenharia, a astronomia, a biologia, a física, etc.

1 Limite e continuidade

1.1 Noção intuitiva de limite

  O  objetivo dessa primeira postagem é mostrar uma definição intuitiva de limite.

 Através de uma regra pré-estabelecida podemos escolher um conjunto de números no conjunto de números reais.

Observe as sucessões abaixo:

Observe as sucessões numéricas 1,2 e 3.

 Sucessão 1
1,2,3,4,5,6,7...

A ideia que essa sucessão nos passa e que podemos marca um número real qual quer na sucessão que sempre encontraremos um termo maior que o marcado.  Assim podemos dizer que os termos dessa sucessão tende para o + infinito.
Podemos fazer:
Denota-se por x tendendo para o + infinito.

Sucessão 2
0,-1,-2,-3,-4,-5...

 A ideia  que essa sucessão nos passa é  que podemos marcar um número real qual quer na sucessão que sempre encontraremos um termo  menor que o marcado.  Assim podemos dizer que os termos dessa sucessão tende para o – (menos) infinito.

Podemos fazer:
 Denota-se por x tendendo para o – infinito.

Sucessão 3
1/2, 2/3, 3/4, 4/5, 5/6, 6/7, 7/8...

A ideia que essa sucessão nos passa é que os termos crescem mais não, ilimitadamente. Esses termos se aproxima cada vez mais perto do 1, mais nunca atinge esse valor.

Podemos fazer:
Denota-se  por x tendendo a 1.

 - o conceito limites de uma função
1 Seja a função f(x) = 3x+1

Para x tendendo a 1 ( x tendendo a 1, não x=1)

Na tabela teremos:

-pela sua direita valores maiores que 1
-pela sua esquerda valores menores que 1

Tabela 1
X
Y=3x+1
X
Y=3x+1
2
7
0.5
2.5
1.5
4.5
0.7
3.10
1.10
4.3
0.8
3.40
1.05
4.15
0.95
3.85
1.001
4.003
0.99
3.97


observe:


















Note que a medida que x se aproxima de 1, y se aproxima de 4, ou seja, quando x tende a 1(x->1, y tende a 4 (y-> 4)

Em geral, fazemos:  


















O limite da função é 4.

Obs: não é preciso que x seja 1. Se f(x) tende para 4 (f(x)->4), dizemos que o limite de f(x) quando x->1  é 4, mesmo quando possam ocorrer casos para os quais x=1 o  valor de f(x) não seja 4.

Em geral, fazemos: 


















Obs: quando x tende a a (x->a) , f(x)  tende a b (f(x) -> b).

·          seja a função y=1-1/x


para x -> +/- o infinito ( x tende a +/- o infinito, não x= +/- infinito

Na tabela teremos:
-pela sua direita valores tendendo para + infinito
-pela sua esquerda valores tendendo para – infinito


Tabela 2
X
Y=1-1/x
X
Y=1-1/x
1
0
-1
2
2
1/2
-2
3/2
3
2/3
-3
4/3
4
3/4
-4
5/4
5
4/5
-5
6/5
.
.
.
.
.
.
.
.
.
.
.
.


observe:
















Note que a medida que x tende para o +/- infinito y->1.

Denota-se por:




















 propriedades dos limites 




































































            RELACIONADOS :
CLIQUE

veja a demonstração das  derivadas:

CLIQUE
COSECX

CLIQUE
COTGX

CLIQUE
SECX

CLIQUE
TGX

CLIQUE
SENX

CLIQUE
COSX

CLIQUE


Redes Sociais

anuncios