NOSSO MENU

Mostrando postagens com marcador angulos. Mostrar todas as postagens
Mostrando postagens com marcador angulos. Mostrar todas as postagens

terça-feira, 11 de agosto de 2015

CIRCUNFERÊNCIA E CÍRCULO




CIRCUNFERÊNCIA E CÍRCULO



Geralmente as pessoas confundem circunferência com círculo, entretanto, existe diferença entre o círculo e a circunferência. 

A  circunferência é o lugar geométrico de todos os pontos de um plano em que estão localizados a uma mesma distância r de um ponto fixo, ou seja, o centro da circunferência.

O círculo é o conjunto de todos os pontos de um plano em que a distância a um ponto fixo O é menor ou igual que uma distância r dada.

Obs1: Quando a distância é nula, o círculo se reduz a um ponto.


Obs2:O círculo é a reunião da circunferência com o conjunto de pontos localizados dentro da mesma. 


VEJA A REPRESENTAÇÃO:


A parte interna da circunferência é o circulo e a circunferência é a linha que limita o círculo.





Obs 1: No caso da circunferência, o raio ( o raio é a distância entre o centro da circunferência até a borda ) é fundamental para o cálculo da ária.


Observe:






     A área de uma região circular é calculada pela equaçãoA = pi x r^2 
^2 = elevado a 2 ) em que r é a medida do raio e pi uma letra grega de valor fixo “igual” a 3,14( aproximado).

Vamos ver um exemplo pratico do calculo da ária circular:

Seja a região circular com raio de 30cm, a  ária da região circular e dada pela equação
A = pi x r^2 ( ^2 = elevado a 2 ). Veja:




A = pi x r^2 = 3,14 x (30cm)^2 = 2.826 cm^2

 
 



Obs: cm^2  é unidade de medida de ária 


Arquivo: Matemática          

         veja também :

·        lei-dos-cossenos
·        lei-dos-senos
·        as-formas-planas
·        formas-planas-e-nao-planas
                                                                                    

Medidas de ângulos



O grau é a unidade de medida de ângulos mais usada no nosso dia a dia. Nos estudos relacionados ao círculo trigonométrico trabalhamos com outra unidade de medida de ângulos, o radiano.  É importante saber converter graus em radianos ou radianos em graus. Veja como fazer a conversão de graus em radianos e radianos em graus:

                     
COMO CONVERTER RADIANOS EM GRAUS

  As unidades usadas para medir ângulos são denominados graus e radianos . Um circulo compreende 2pi  radianos, equivalente a 360 graus.

   2pi ou 360 graus representam um volta completa no circulo.


Relações entre unidades em graus e radianos:

FIGURA 1














Convertendo

Para converter graus para radianos utilizamos regra de três simples, exemplos:

Exemplo 1

Para converter  15 graus em radianos

FIGURA 2


















Exemplo 2


Para converter  12 graus em radianos 

FIGURA 3





CONVERTENDO RADIANOS EM GRAUS 

Para converter radianos em graus basta substituir o valor de pi por 180 graus.


FIGURA 1




















FIGURA 2




















FIGURA 3




















por: Dan. S.

ângulos congruentes

A congruência entre ângulos





Veja na figura acima que AÔB e CÔD têm a mesma medida. Eles são ângulos congruentes. Assim concluímos que dois ângulos são congruentes se tiverem a mesma medida.

Dois ângulos são congruentes se, superpostos um sobre o outro, todos os seus elementos coincidem.

Obs: Dois ângulos opostos pelo vértice são sempre congruentes.


As propriedades da congruência é reflexiva, simétrica e transitiva.

Arquivo: Matemática

veja também :

·        lei-dos-cossenos
·        lei-dos-senos
·        as-formas-planas
·        formas-planas-e-nao-planas



domingo, 5 de julho de 2015

ária do triângulo



Ária do triângulo

Uma das aplicações do triângulo. A forma triangular das estruturas metálicas  chamadas de  “Treliça” servem para aumentar a rigidez , não perderem a forma quando submetidas ao estresse  e evitar que se tenha uma estrutura pesada e como consequência as  estruturas desse  tipo  são extremamente fortes e capazes de suportar uma grande quantidade de força, sem alterar a forma ou causar ruptura.

Veja alguns exemplos:







Existe mais aplicações da forma triangular, entretanto o que nos interessa aqui é aprender como calcular a aria de um triângulo.

Aria do triângulo
Definição de Área: Área é a quantidade de espaço de uma superfície.
Considere:




Onde:
A = área
b = base
h = altura

Formula para calcular a ária do triângulo


Exemplos de calculo de área:

1:

Seja o triângulo



 





2)

Seja o triângulo

 









Obs: Usamos cm como unidade de medida.


por: Dan. S.





Redes Sociais

anuncios