NOSSO MENU

Mostrando postagens com marcador Conjunto dos números rconjuntos numericos. Mostrar todas as postagens
Mostrando postagens com marcador Conjunto dos números rconjuntos numericos. Mostrar todas as postagens

domingo, 9 de agosto de 2015

Média aritmética ponderada



Média aritmética ponderada

Ao contrario da média simples, a média aritmética ponderada calcula a média quando os valores possuem pesos diferentes.
- Você fez 4 provas e cada uma com as seguintes notas:
Primeira = 6 , segunda = 7, terceira =  8, quarta = 7.
Imagine que cada uma das notas escolares tem um peso distinto. Uma primeira prova tem peso 2, a segunda peso 3, a terceira peso 2 e a quarta peso 3.
 Como calcular ?
Primeiro - Multiplica-se o valor pelo seu peso.
Segundo - Soma aos resultados das outras multiplicações e então divide-se pela soma de todos os pesos.
Por exemplo:

6.2 + 4.3 +  8.2 + 7.3 / 2 + 3 + 2 + 3 =
 12 + 12 + 16 + 21 / 10 = 6,1

Mais exemplo:
Imagine que você fez 4 provas:
Primeira = 5 , segunda = 5, terceira =  7, quarta = 7.
Imagine que cada uma das notas escolares tem um peso distinto. Uma primeira prova tem peso 2, a segunda peso 3, a terceira peso 2 e a quarta peso 3.

5.2 + 5.3 +  7.2 + 7.3 / 2 + 3 + 2 + 3 =
 10 + 15 + 14 + 21 / 10 = 6

Se a média pra passa de ano for 6, você foi aprovado, se for maior que 6, você foi reprovado. 

Conjunto dos números racionais (Q)



Conjunto dos números racionais (Q)

Os números racionais são todos os números que podem ser mostrados na forma de fração ou números decimais compostos por números inteiros, pertencentes ao conjunto dos números reais junto ao conjunto dos números irracionais .

Obs: O conjunto dos números racionais é representado pela letra Q maiúscula.

Exemplo de números racionais :
1/5 ou 0, 2
1/2 ou 0,5
3/4 ou 0,6
-1/2 ou -0,5

Obs: Os números 1/ 5, 1/2, 3/4  estão na forma a/b com a,b pertencente a Z e b diferente de 0.

Observações  sobre os números racionais:

Obs 1: Os número decimal exato é  número racional.
Obs 2: As dízimas periódicas é um número racional.
Obs 3: Todo número inteiro é um número racional.

Números decimais com finitas ordens decimais:

1)1 / 10 = 0, 1
2)3/100 = 0, 03
3)-3/100 = -0,03
4)25/100 = 0,25
5)-25/100 = -0,25

 Número decimal com infinitas ordens decimais periódica:

1)1/3 = 0,3333333...
2)5/11 = 0,45454545...
3)4/11 = 0,36363636...

Obs: São dízimas periódicas simples ou compostas.

 Demonstração através da utilização de diagramas:




Obs: Todo número inteiro é um número racional, portanto, o conjunto dos números inteiros (Z) é um subconjunto do conjunto dos números racionais (Q).

por: Dan. S. 

Redes Sociais

anuncios