NOSSO MENU

sexta-feira, 24 de julho de 2015

Trena

Trena


trenas   


O que é?

A  Trena é uma fita métrica usada para medir distâncias. Ela é feita em metal,  fibra de vidro ou  plástico. A trena é retrátil e acondiciona num invólucro ( “ caixinha”).

Quais os tipos de trenas?
R:

Veja a listinha de trenas abaixo.

Trena Profissional

Há  modelos em 3, 5 e 8 metros.

Trena Longa

Há  trenas com fita de fibra de vidro em 10, 20, 30 e 50 metros.

Trena Longa Aberta

Há trenas longa em 30 e 50 metros.

Trena Chaveiro

A trena chaveiro  alcança até 1 metro com sua fita metálica.

Trena Robusta

O botão de trava emborrachado, as duas pausas de apoio e a ponteira imantada garantem precisão impecável para reformas e construções.

É encontrada com  8m x 25mm.

As trenas são feitas de que materiais?
R

Elas podem ser feitas em:

 Metal
Fibra de vidro
Plástico

Unidades de medidas das trenas :

Centímetros
Milímetros
Polegadas
Pés.

Serve pra que?
R:


É utilizada por profissionais e amadores de várias áreas, na construção civil, em marcenarias, em mecânicas, etc.


por: Dan. S.

Unidades de medidas de tempo




                         Unidades de medidas de tempo



                                               Relógios solares 

Antigamente  quando não existia as unidades de definição do tempo  os homens se orientavam pela posição do sol. Nos dias de hoje, temos alguns aparelhos que nos orientam sobre O ano, O dia, a hora, o minuto e segundo  de forma exata.

 veja algumas unidades que nos orientam no nosso dia a dia:


Ano – aproximadamente 365 dias
Mês – 28 a 31 dias
Dia – 24 horas
Hora – 60 minutos
Minuto – 60 segundos



Observação sobre o segundo

O intervalo de tempo natural entre as constantes passagens do Sol sobre um especifico meridiano dá origem ao dia solar;  O primeiro relógio do homem foi o sol.

O segundo é equivalente a 1/86.400 do dia solar médio.

Múltiplos

minutos
hora
dia
min
h
d
60 s
60 min = 3.600 s
24 h = 1.440 min = 86.400s 

Observe os submúltiplos do segundo:

décimo de segundo
centésimo de segundo
milésimo de segundo

Dizemos:

1) 1 minuto

2) 10 minutos

3) 1 segundos

4) 13segundos

5) 3décimos

6) 5 décimos

7) 10 centésimos

8) 14 centésimos

9) 1 milésimos


10) 7 milésimos

árias de figuras planas





Ária do losango

O Losango é uma figura plana que esta na categoria dos quadriláteros ( Polígonos que possuem 4 lados, 4 vértice e 4 ângulos são chamados de quadriláteros).

O quadrilátero ABCD é um losango, cujas dimensões diagonais medem D e d ( D e d representa as diagonais).
Observe o losango abaixo:




A ária desse losango e dada pela seguinte equação      
   

Onde :
A = ária do losango
D = diagonal maior
d = diagonal menor
obs:  O paralelogramo e o losango possui as mesmas características. Com essa informação podemos deduzir que o cálculo da área do paralelogramo pode ser utilizado no cálculo da área do losango.
 Isso porque:


O losango é formado por dois triângulos idênticos, com base igual a d  e altura igual a D / 2.


Onde:

D = diagonal maior
d = diagonal menor

Sabendo que a figura acima forma dois triângulos e que a ária desses triângulos é dada respectivamente pela equação,


A = d . D
         2 
         2 

vamos desenvolver a seguinte operação A losango = Atri1 + Atri2:




Ária do círculo

Irei apresentar abaixo a maneira geral de calculara a ária do círculo, veja:

Obs: A área do círculo é diretamente proporcional ao raio, que é a distância entre o 
centro e a borda do circulo.





Onde :

A = aria  círculo
Pi =  é aproximadamente  3, 14 ( é uma constante)
r = raio

Exemplo:

Seja o circulo




A ária é igual a:
(Usando a formula) A = pi.r^2 = 3,14.(5cm)^2 = 78,5 cm^2 ( ^ significa elevado )

Obs: usamos como unidade de medida cm.



Ária do cone

Calcular a ária de uma figura espacial consiste no cálculo de toda a aria da superfície desta figura.

Antes de aprendermos a realizar o cálculo da ária do cone vamos aprender um pouco sobre os elementos de um cone.

Elementos de um cone

Os elementos que podem ser identificados em um cone são:

CONE



   VérticeO vértice do cone acima é o ponto E, onde ocorre os segmentos de retas.

   Geratriz: A geratriz do cone é qualquer segmento que tenha um ponto  no vértice do cone e o outro na curva que envolve a base.

     Altura: A altura do cone é a distância do vértice  ao plano da base.

     Superfície lateral: A superfície lateral de um cone é a união de todos os segmentos de reta que tem uma ponto em E e a outra na curva que envolve a base.

     Superfície do cone: A superfície do cone  é a união da superfície lateral com a base do cone que é o círculo.

     Eixo: O eixo do cone é o segmento de reta que passa pelo vértice E e pelo centro da base.

       Seção meridiana: A seção meridiana de um cone é uma região triangular obtida pela interseção do cone com um plano.

      Base: A base de um cone é a região plana contida no interior da curva.   

Veja a separação dos elementos do cone:

Cone




Cone planificado

Foi preciso separar as partes  do cone para podermos calcular a ária através da figuras planificadas.
Primeiro: vamos calcular a ária da base



Área da base

Como a base é um circulo, vamos usar a equação do circulo.

 Veja a formula para a ária da base:
A = pi.r^2  ( onde: pi vale aproximadamente 3, 14..., r é o raio e ^ significa elevado )


Área lateral

Através da planificação do cone vamos calcular a ária lateral.

Veja:

na planificação  do cone temos:

r =  raio
g = geratriz
2pir = perímetro da base do cone

Através desses dados podemos fazer:

Obs: É necessário calcular  o setor circular, para isso é preciso utilizar uma regra de três simples.


veja:



Relacionando todos esses dados, obtemos:
Dados:
A = pi.r^2  (área da base)
A = pi.r.g ( ária lateral)
Ária total do cone

A(total) = A(base) + A(lateral)
= pi.r^2  + pi.r.g = pi.r ( g + r)

Finalmente a ária total é:
A (total) = pi.r ( g + r)

Onde :

pi é aproximadamente 3, 14, r é o raio, g é a geratriz



Exemplo:
Usando a equação para a aria total do cone

A (total) = pi.r ( g + r)

Seja um cone de g = 10  e r = 6


A (total) = pi.r ( g + r) = 3, 14 x 6 ( 10 + 6 ) = 18,84 ( 10 + 6 ) =

188,4 + 113,04 = 301,44 ( supondo que a unidade de medida seja o cm, temos 301,44 cm^2 )

Ária do triângulo

Uma das aplicações do triângulo. A forma triangular das estruturas metálicas  chamadas de  “Treliça” servem para aumentar a rigidez , não perderem a forma quando submetidas ao estresse  e evitar que se tenha uma estrutura pesada e como consequência as  estruturas desse  tipo  são extremamente fortes e capazes de suportar uma grande quantidade de força, sem alterar a forma ou causar ruptura.

Veja alguns exemplos:






Existe mais aplicações da forma triangular, entretanto o que nos interessa aqui é aprender como calcular a aria de um triângulo.

Aria do triângulo
Definição de Área: Área é a quantidade de espaço de uma superfície.
Considere:




Onde:
A = área
b = base
h = altura

Formula para calcular a ária do triângulo


Exemplos de calculo de área:

1:

Seja o triângulo



 





2)

Seja o triângulo

 









Obs: Usamos cm como unidade de medida.



Área da região circular     


primeiro
: O que é Geometria Plana ?

A geometria plana ou Euclidiana, teve início na Grécia antiga.

A geometria plana  é a parte da matemática que estuda as figuras que não possuem volume, Esse estudo analisa   as diferentes formas de objetos, e baseia-se em três conceitos básicos: ponto, reta e plano. O ponto era considerado um elemento que não tinha definição plausível, a reta era definida como uma sequência infinita de pontos e o plano definido através da disposição de retas.  A geometria plana  também é chamada de euclidiana  porque representa uma homenagem ao geômetra Euclides de Alexandria, isso porque ele é considerado o “pai da geometria”.   


A palavra  geometria é a união das palavras “geo” (terra) e “metria” (medida);  assim, obtemos:  "medida de terra".

Segundo: Depois dessa introdução vamos usar  as propriedades da geometria plana para  determina a área da região circular .


A circunferência

Geralmente as pessoas confundem circunferência com círculo, entretanto, existe diferença entre o círculo e a circunferência.

Observe :

A parte interna da circunferência é o circulo e a circunferência é a linha que limita o círculo.





Obs 1: No caso da circunferência, o raio ( o raio é a distância entre o centro da circunferência até a borda ) é fundamental para o cálculo da ária.


Observe:






     A área de uma região circular é calculada pela equaçãoA = pi x r^2 
^2 = elevado a 2 ) em que r é a medida do raio e pi uma letra grega de valor fixo “igual” a 3,14( aproximado).

Vamos ver um exemplo pratico do calculo da ária circular:

Seja a região circular com raio de 30cm, a  ária da região circular e dada pela equação
A = pi x r^2 ( ^2 = elevado a 2 ). Veja:




A = pi x r^2 = 3,14 x (30cm)^2 = 2.826 cm^2

 
 

Obs: cm^2  é unidade de medida de ária 



Área do paralelogramo


primeiro
: O que é Geometria Plana ?

A geometria plana ou Euclidiana, teve início na Grécia antiga.

A geometria plana  é a parte da matemática que estuda as figuras que não possuem volume, Esse estudo analisa   as diferentes formas de objetos, e baseia-se em três conceitos básicos: ponto, reta e plano. O ponto era considerado um elemento que não tinha definição plausível, a reta era definida como uma sequência infinita de pontos e o plano definido através da disposição de retas.  A geometria plana  também é chamada de euclidiana  porque representa uma homenagem ao geômetra Euclides de Alexandria, isso porque ele é considerado o “pai da geometria”.   


A palavra  geometria é a união das palavras “geo” (terra) e “metria” (medida);  assim, obtemos:  "medida de terra".

SegundoDepois dessa introdução vamos usar  as propriedades da geometria plana para  determina a área de um paralelogramo.

Veja: Antes de aprender como calcular a área de um paralelogramo e útil saber sobre os tipos de paralelogramos.

Tipos de paralelogramos:






obs: Todo quadrilátero que possui os lados oposto paralelos é chamado de paralelogramo. Através dessa informação podemos dizer que o quadrado, o retângulo e o losango são paralelogramos.




Este é um paralelogramo

onde: A = área, b = base e h = altura


 Conhecendo a base e a altura do paralelogramo é possível calcular a aria.


Exemplo pratico do uso da fórmula acima:

*Calcule a área do paralelogramo abaixo:



Usando a fórmula fica:
A = base x altura = 22cm x 18 cm = 396 cm^2 ( ^ = elevado )

A = 396 cm^2


Obs: cm^2  é unidade de medida de ária 


por: Dan. S.

Redes Sociais

anuncios