NOSSO MENU

segunda-feira, 10 de agosto de 2015

MMC e MDC



  O  minimo múltiplo comum de dois ou mais números é o menor múltiplo positivo e diferente de zero comum a todos eles.

  algumas observações importantes:

  1) zero é múltiplo de todos os números naturais.
  2) um número tem infinitos múltiplos.
  3) números primos entre si
         
   Exemplo:

         Os números 20 e 21 são números primos entre si, pois m.d.c (20,21) = 1. (pois o 1  é o único divisor comum ao 20 e ao 21)


         Os números 4 e 8 não são números primos entre si, pois m.d.c (4,8) = 8.(Dois ou mais números são primos entre si quando o máximo divisor comum desses números é 1).

 minimo múltiplo comum 
    Dois ou mais números sempre tem múltiplos comuns entre eles.

  Observe:

  Vamos encontrar os  múltiplos comuns de 4 e 8
múltiplos de 4: 0, 4, 8, 12, 16, 20, 24, ...
múltiplos de 8: 0, 8, 16, 24, ...

   São  múltiplos comuns de 4 e 8 : 0, 8, 16, 24, ... entre esses múltiplos, diferentes de zero, 8 é o menor entre eles. Portanto 8 é o múltiplo comum de 4 e 8.

   Exemplo:
 M (10) = 0, 10, 20, 30, 40, ...
 M (20) = 0, 20, 40, 60, 80, ...

     O m.m.c entre 10 e 20 é 20 ( pois o  menor múltiplo comum entre eles é o  20 ).

  -  Segunda forma de encontrar o m.m.c. Através da fatoração vamos encontrar o m.m.c entre 10 e 20. Nessa forma devemos escolher  os fatores comuns de maior expoente e termos não comuns.

     Primeiro: decompomos os números em fatores primos.
   segundo: o m.m.c é o produto dos fatores comuns e não-comuns.

     10 = 2 x 5
     20 = 2 x 2 x 5

Agora escrevemos a fatoração dos números em forma de potência, temos:

    10 = 2 x 5
    20 = 2² x 5 

  m.m.c(10;20) = 2² x 5 = 20

   O m.m.c. de dois ou mais números é o produto dos fatores comuns e não-comuns a eles, cada um elevado ao maior expoente.
- Terceira forma de encontra o m.m.c.

      Decomposição simultânea  

É o processo em que decompomos todos os números ao mesmo tempo. O produto dos fatores primos encontrados nessa decomposição é o m.m.c
     exemplo:
 m.m.c ( 10, 20, 30 )
















portanto: m.m.c (10,20,30) = 2 x 2 x 5 x 5 = 100






 M.D.C (máximo divisor comum)

Os divisores comuns de 8 e 12  são 1, 2, 4. Entre eles, 4 é o máximo divisor comum de 8 e 12 e indicamos por  m.d.c (8,12) = 4. Dois números naturais sempre têm divisores comuns. o maior divisor comum entre dois números ou mais é chamado de máximo divisor comum entre esses números.
 
 m.d.c entre os números 10 e 20

 D(10) = 1, 2, 5, 10
 D(20) = 1, 2, 5, 10

O maior divisor comum dos números 10 e 20 é 10.

 exemplos:
  m.d.c (4,6) = 2
  m.d.c (6,12) = 6 
  m.d.c (6,12,15) =3

cálculo do m.d.c

    Podemos também determinar o m.d.c de dois ou mais números através da fatoração. O m.d.c de dois ou mais números, quando fatorados, é o produto dos fatores comuns entre eles cada um elevado ao menor expoente. Utilizando esse método:

     m.d.c (10;20)

    10 = 2 x 5
    20 = 2² x 5
 
    m.d.c (10,20) = 2 x 5 = 10


Por: Dan. S.

Nenhum comentário:

Postar um comentário

Redes Sociais

anuncios