NOSSO MENU

segunda-feira, 6 de julho de 2015

Ária do cone



Ária do cone

Calcular a ária de uma figura espacial consiste no cálculo de toda a aria da superfície desta figura.

Antes de aprendermos a realizar o cálculo da ária do cone vamos aprender um pouco sobre os elementos de um cone.

Elementos de um cone

Os elementos que podem ser identificados em um cone são:

CONE



   Vértice: O vértice do cone acima é o ponto E, onde ocorre os segmentos de retas.

   Geratriz: A geratriz do cone é qualquer segmento que tenha um ponto  no vértice do cone e o outro na curva que envolve a base.

     Altura: A altura do cone é a distância do vértice  ao plano da base.

     Superfície lateral: A superfície lateral de um cone é a união de todos os segmentos de reta que tem uma ponto em E e a outra na curva que envolve a base.

     Superfície do cone: A superfície do cone  é a união da superfície lateral com a base do cone que é o círculo.

     Eixo: O eixo do cone é o segmento de reta que passa pelo vértice E e pelo centro da base.

       Seção meridiana: A seção meridiana de um cone é uma região triangular obtida pela interseção do cone com um plano.

      Base: A base de um cone é a região plana contida no interior da curva.   

Veja a separação dos elementos do cone:

Cone




Cone planificado

Foi preciso separar as partes  do cone para podermos calcular a ária através da figuras planificadas.
Primeiro: vamos calcular a ária da base



Área da base

Como a base é um circulo, vamos usar a equação do circulo.

 Veja a formula para a ária da base:
A = pi.r^2  ( onde: pi vale aproximadamente 3, 14..., r é o raio e ^ significa elevado )


Área lateral

Através da planificação do cone vamos calcular a ária lateral.

Veja:

na planificação  do cone temos:

r =  raio
g = geratriz
2pir = perímetro da base do cone

Através desses dados podemos fazer:

Obs: É necessário calcular  o setor circular, para isso é preciso utilizar uma regra de três simples.


veja:



Relacionando todos esses dados, obtemos:
Dados:
A = pi.r^2  (área da base)
A = pi.r.g ( ária lateral)
Ária total do cone

A(total) = A(base) + A(lateral)
= pi.r^2  + pi.r.g = pi.r ( g + r)

Finalmente a ária total é:
A (total) = pi.r ( g + r)

Onde :

pi é aproximadamente 3, 14, r é o raio, g é a geratriz

Exemplo:
Usando a equação para a aria total do cone

A (total) = pi.r ( g + r)

Seja um cone de g = 10  e r = 6


A (total) = pi.r ( g + r) = 3, 14 x 6 ( 10 + 6 ) = 18,84 ( 10 + 6 ) =

188,4 + 113,04 = 301,44 ( supondo que a unidade de medida seja o cm, temos 301,44 cm^2 )


por: Dan. S.

Nenhum comentário:

Postar um comentário

Redes Sociais

anuncios