NOSSO MENU

terça-feira, 7 de abril de 2015

limites/1





   Limites

Introdução

     Saber trabalhar com limite é de fundamental importância no estudo do cálculo.
 um dos fundamentos do Cálculo é constituído pelo conceito de limite, isso porque,  para definir derivada, continuidade, integral, convergência, divergência, é utilizado esse conceito.
  
   O registro histórico, no entanto, e justamente oposto a essa ideia. Por muito tempo, a noção de limite foi confundida com idéias vagas, às vezes filosóficas relativas ao infinito, números infinitamente grandes ou infinitamente pequenos.

  A definição moderna de limite surgiu nos séculos XVIII e XIX, originário da Europa.  Tal  ferramenta matemática é bastante utilizada em várias árias do conhecimento, como a engenharia, a astronomia, a biologia, a física, etc.

1 Limite e continuidade

1.1 Noção intuitiva de limite

  O  objetivo dessa primeira postagem é mostrar uma definição intuitiva de limite.

 Através de uma regra pré-estabelecida podemos escolher um conjunto de números no conjunto de números reais.

Observe as sucessões abaixo:

Observe as sucessões numéricas 1,2 e 3.

 Sucessão 1
1,2,3,4,5,6,7...

A ideia que essa sucessão nos passa e que podemos marca um número real qual quer na sucessão que sempre encontraremos um termo maior que o marcado.  Assim podemos dizer que os termos dessa sucessão tende para o + infinito.
Podemos fazer:
Denota-se por x tendendo para o + infinito.

Sucessão 2
0,-1,-2,-3,-4,-5...

 A ideia  que essa sucessão nos passa é  que podemos marcar um número real qual quer na sucessão que sempre encontraremos um termo  menor que o marcado.  Assim podemos dizer que os termos dessa sucessão tende para o – (menos) infinito.

Podemos fazer:
 Denota-se por x tendendo para o – infinito.

Sucessão 3
1/2, 2/3, 3/4, 4/5, 5/6, 6/7, 7/8...

A ideia que essa sucessão nos passa é que os termos crescem mais não, ilimitadamente. Esses termos se aproxima cada vez mais perto do 1, mais nunca atinge esse valor.

Podemos fazer:
Denota-se  por x tendendo a 1.

 - o conceito limites de uma função
1 Seja a função f(x) = 3x+1

Para x tendendo a 1 ( x tendendo a 1, não x=1)

Na tabela teremos:

-pela sua direita valores maiores que 1
-pela sua esquerda valores menores que 1

Tabela 1
X
Y=3x+1
X
Y=3x+1
2
7
0.5
2.5
1.5
4.5
0.7
3.10
1.10
4.3
0.8
3.40
1.05
4.15
0.95
3.85
1.001
4.003
0.99
3.97


observe:


















Note que a medida que x se aproxima de 1, y se aproxima de 4, ou seja, quando x tende a 1(x->1, y tende a 4 (y-> 4)

Em geral, fazemos:  


















O limite da função é 4.

Obs: não é preciso que x seja 1. Se f(x) tende para 4 (f(x)->4), dizemos que o limite de f(x) quando x->1  é 4, mesmo quando possam ocorrer casos para os quais x=1 o  valor de f(x) não seja 4.

Em geral, fazemos: 


















Obs: quando x tende a a (x->a) , f(x)  tende a b (f(x) -> b).

·          seja a função y=1-1/x


para x -> +/- o infinito ( x tende a +/- o infinito, não x= +/- infinito

Na tabela teremos:
-pela sua direita valores tendendo para + infinito
-pela sua esquerda valores tendendo para – infinito


Tabela 2
X
Y=1-1/x
X
Y=1-1/x
1
0
-1
2
2
1/2
-2
3/2
3
2/3
-3
4/3
4
3/4
-4
5/4
5
4/5
-5
6/5
.
.
.
.
.
.
.
.
.
.
.
.


observe:
















Note que a medida que x tende para o +/- infinito y->1.

Denota-se por:




















 propriedades dos limites 




































































            RELACIONADOS :
CLIQUE

veja a demonstração das  derivadas:

CLIQUE
COSECX

CLIQUE
COTGX

CLIQUE
SECX

CLIQUE
TGX

CLIQUE
SENX

CLIQUE
COSX

CLIQUE


Nenhum comentário:

Postar um comentário

Redes Sociais

anuncios