Derivada de constante
Derivada representa a taxa de variação de uma
função.
Seja f(x) uma função constante f(x) = k, onde k
pertence ao conjunto dos números reais, a sua derivada é igual a zero.
É muito comum utilizarmos a notação dx/dy (que se
lê ´´a derivada de y em relação a x``) e a notação f`(x)( que representa a
derivada de f(x).
Vamos praticar!
Derive as seguintes funções:
Obs: vamos usar a notação f`(x).
1
a)
f(x) = 1000 é um número
f`(x)=0 (derivada representada por f`(x))
b)
f(x) =35384545 é um número
f`(x) =0
c)
f(x)= - 1000000000 é um número
f`(x) =0
observe: não importa o tamanho da constante a sua
derivada sempre será zero.
Seja f(x) uma função constante f(x) = k, onde k
pertence ao conjunto dos números reais, a sua derivada é igual a zero.
podemos demostrar isso através da expressão abaixo:
Nenhum comentário:
Postar um comentário